
N A S A  TECHNICAL NOTE 

h 

I 

z + 
4 
m 
4 z 

. 

MIXED FINITE-DIFFERENCE SCHEME 
FOR FREE-VIBRATION ANALYSIS 
OF NONCIRCULAR CYLINDERS 

by Ahmed K .  Noor m d  Wedell B. Stephens 

Lal~gley Reseniach Center 
Hnmptolz, V a  23365 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  W A S H I N G T O N ,  D. C. FEBRUARY 1973 



MIXED FINITE -DIFFERENCE SCHEME FOR FREE-VIBRATION 

ANALYSIS OF NONCIRCULAR CYLINDERS 

By Ahmed K. Noor* and Wendell B. Stephens 
Langley Research Center 

SUMMARY 

A mixed finite-difference scheme is presented for the free-vibration analysis of 
simply supported closed noncircular cylindrical shells. The problem is formulated in 
te rms  of eight f irst-order differential equations in the circumferential coordinate which 
possess a symmetric coefficient matrix and are  free of the derivatives of the elastic and 
geometric characterist ics of the shell. In the finite-difference discretization, two inter-  
lacing gr ids  are used for the different fundamental unknowns in such a way as to avoid 
averaging in the difference-quotient expressions used for the first derivative. The 
resulting finite-difference equations a r e  symmetric. The inverse-power method is used 
for obtaining the eigenvalues and eigenvectors. 

Numerical studies of the effects of reducing the local discretization error and of 
mesh refinement on the accuracy and convergence of the solutions obtained by the scheme 
developed, as well as by the conventional schemes, a r e  discussed. Both oval and elliptic 
profiles with constant and variable thicknesses have been considered, and, in all cases, 
a monotonic convergence for the eigenvalues was obtained with the reduction of the local 
discretization e r r o r  and/or the increase in the number of finite-difference intervals in 
the case of the modified scheme. Comparisons were also made between the resul ts  
obtained from this  study and results from some of the previous approximate analyses. 
It was found that the proposed scheme, in addition to  a number of other advantages, leads 
to highly accurate resul ts  even when a small number of finite-difference intervals are 
used. 

INTRODUCTION 

Although considerable l i terature has been devoted to the free-vibration analysis of 
circular cylindrical shells, investigations of the vibrations of noncircular cylindrical 
shells are rather  limited in extent. Cylindrical shells having a noncircular c ross  section 
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are used i n  deep submersibles, aerospace vehicles, and other industrial applications, 
and, therefore, an understanding of their vibration characterist ics is desirable. Because 
the radius of curvature of the noncircular cylinder var ies  with the circumferential coor- 
dinate, closed-form or analytic solutions cannot be obtained, in  general, for  this c lass  of 
shells. Numerical or approximate techniques a r e  necessary for their  analysis. 

Various approximate methods have been used for the free-vibration analysis of 
noncircular cylinders. Perturbation techniques were used by Klosner (refs. 1 and 2) 
for  infinitely long cylinders and by Malkina (ref. 3) for shells with simply supported 
curved edges. Ivanyuta and Finkel'shteyn (ref. 4) applied the variational method of 
Oniashvili (ref. 5) in their study of f ree  vibration of prestressed elliptic cylinders. 
Quite recently, Sewall et al. (refs. 6 and 7) applied the Rayleigh-Ritz technique to  the 
vibration analysis of elliptic cylinders having simply supported, free, and clamped edges. 
Culberson and Boyd's (ref. 8) vibration analysis of simply supported oval cylinders 
involved a Fourier approach similar to that employed by Romano and Kempner (refs. 9 
and 10) in the static s t r e s s  analysis problem. 

The present study was motivated by the approximate character of the solutions 
obtained, the lengthy algebraic manipulations involved, and convergence difficulties 
reported in the publications just cited. The purpose of this paper is to present a simple 
and accurate "mixed" finite-difference scheme for the determination of the natural fre- 
quencies and mode shapes of simply supported (longitudinal displacement is unrestrained), 
isotropic, closed arbitrary cylindrical shells with constant o r  variable wall thickness. 
The t e rm "mixed' re fe rs  to the fact that both s t r e s s  resultants and displacements are 
chosen as primary variables. The accuracy of the scheme is demonstrated by means of 
a number of numerical examples. 

The analytical formulation is based on the linear Sanders-Budiansky first- 
approximation shell theory. (See ref. 11.) A Fourier approach is used to  separate the 
variables, and the governing equations are reduced to eight f irst-order ordinary differ- 
ential equations in the circumferential coordinate. The reduction to  first-order differ - 
ential equations is similar to that used by Goldberg (ref. 12), Kalnins (ref. 13), and others 
in conjunction with numerical integration techniques. In contrast to the derivations in 
references 12 and 13, however, the governing equations in the present study a r e  arranged 
to yield a symmetric coefficient matrix for  the differential equations. For cylindrical 
shells with variable geometric or elastic characteristics, the symmetry of the governing 
equations is a unique feature of this formulation and is particularly convenient when a 
finite-difference method is used for  the solution, since the resulting finite-difference 
equations a re  also symmetric. 

The finite-difference scheme presented herein is a modification of the method used 
in references 11 and 14 for the static analysis of the same class  of shells. It is based 
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on the use of two interlacing grids for the different fundamental unknowns in contrast to 
other methods, including references 12 and 13, in which all unknowns a r e  specified at the 
same set of points. References 12 and 13 use numerical integration (and multisegment 
method). The first-order equation formulation simplifies the finite-difference discreti- 
zation, and the use of interlacing grids results in reducing both the local discretization 
e r ro r  and the bandwidth of the finite-difference field equations. In addition, the use of 
the interlacing grids resul ts  in a monotonic convergence for both the frequencies and the 
mode shapes with both reduction in local discretization e r ro r  (through the use of higher 
order difference-quotient expressions) and mesh refinement. The cited advantages, 
coupled with the symmetric nature of the equations, lead to considerable improvement in 
the computational efficiency of the finite-difference scheme. 

1 

The formulation presented herein is limited to cases  where the fundamental 
unknowns are separable with respect to  the independent variables. This is the case for 
noncircular cylindrical shells having simply supported curved edges and mechanical 
characterist ics independent of the longitudinal coordinate. The formulation can be 
applied to other boundary conditions through the use of Kantorovich's method in  conjunc- 
tion with the Hellinger-Reissner mixed variational principle (ref. 15). Although the pre- 
sentation is focused on noncircular cylinders, the finite-difference scheme can be extended 
to  other c lasses  of structures. 

SYMBOLS 

a,b semimajor and semiminor axes of oval (or elliptic) profiles, respectively 

C O  reference extensional rigidity of shell, chosen to be average extensional 

EhO 
1 - v  2 rigidity over length L2, - 

C length ratio, 

Young's modulus of elasticity 

circular frequency of vibration of shell, hertz 

local thickness of shell 
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h0 

i =  $-1 

L1’L2 

reference thickness, chosen to be average thickness over length L2 

axial and circumferential lengths of shell, respectively 

finite-difference interval in t2 -direction 1 

moment s t r e s s  resultants 1’ M2 Y M  12 

m number of longitudinal half -waves 

exponent of order of local discretization e r r o r  N 

direct s t r e s s  resultants l”2 Y N  12 
- 

12 

n 

- 
n 

Ql’Q2 

R 

RO 

t 

u,v,w 

v2 

7x3 

- 
01 = R ~ / L ,  

modified (boundary) s t r e s s  resultant 

number of finite-difference intervals in t2 -direction in quarter of profile 

number of circumferential waves 

transverse shear s t r e s s  resultants 

local radius of curvature of middle surface of shell 

reference radius of curvature, chosen to be radius of a circle with same 
circumference as that of noncircular profile 

time 

displacement components of middle surface in coordinate directions 

effective (boundary) transverse shear stress resultant (see eq. (3b)) 

curvilinear coordinates (see fig. I) 
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6 amplitude of thickness variation, measured from average thickness over 
length L2 

Y measure of oval eccentricity 

1 X = h/ho 

V Poisson's ratio 

w angular frequency, radians per second 

rotation components of middle surface 

density of shell material 

41, 42 

P S  

P curvature parameter, R,/R 

8 angle made by the normal at any point to the minor axis (see fig. 1) 

dimensionless coordinates on shell middle surface, t,= xa - for a =  1,2 
L a  {a 

1 1  row matrix 

column matrix 

[ I  rectangular or square matrix 

{ qm}, (Hm} vectors of fundamental unknowns 

Superscript T indicates transpose of a matrix. 

MATHEMATICAL FORMULATION 

Shell Geometry 

The geometric characteristics of the shell are shown in figure 1 and are defined as 
follows: L1 and L2 are axial and circumferential lengths of the middle surface of the 
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Figure 1.- Shell geometry. 

shell; h and ho a r e  the local and reference shell thicknesses (ho is chosen herein 
to be the average thickness of the shell over the length L2); a and b a r e  the semi- 
major and semiminor axes of the c ross  section. 

In the present study, both oval and elliptic profiles are considered. The radius of 
curvature of the oval, in the form found in reference 9, is 

RO 

R(x2) = XIl 
L 1 + y cos 4n - 

L2 

where Ro is the radius of a circle having the same circumference as the oval and y 
is an eccentricity parameter, which is a measure of the noncircularity of the c ross  
section, 0 5 1yI < 1. 

The radius of curvature of the elliptic profile is given by 

R x2) = b2 

( 3/2 

where 8 is  the angle made by the normal at any point to the minor axis (fig. 1). 

To cast the problem in nondimensional form, two dimensionless coordinates t1 
and t2 are introduced, where 

I 
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Also, the following dimensionless shell parameters a r e  used: 

Governing Differential Equations 

The fundamental unknowns of the mixed formulation used herein are chosen to be 
the quantities that would appear in the statement of the boundary conditions along an edge 
parallel to the xl-axis. For the Sanders-Budiansky first-approximation theory, these 
quantities are the four generalized displacements u, v, w ,  and G2 and the four stress 
resultants N2, N12, Ma, and V2, where 

N 

12 - 
N12 = N12 - 2R 

aM2 1 
axl 

Va = Q2 + - 

Here N12 and M12 are the modified (symmetric) s t r e s s  resultants used in the 
Sanders-Budiansky theory. (See ref. 16.) 

If the different shell s t r e s s  resultants and displacements a r e  expanded in a Fourier 
se r ies  in the longitudinal coordinate so that the simple -support boundary conditions along 
the curved edges are satisfied, then 
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where w is the angular frequency in radians/second. 

The governing equations for arbitrary cylindrical shells then reduce to eight first 
order  ordinary differential equations for each Fourier harmonic. For  the mth Fourier 
harmonic, these equations can be arranged to yield a symmetric coefficient matrix as 
follows (ref. 14): 

where 

EhO co = - 1 - v  2 

The [A] and [B] are 4 by 4 symmetric submatrices, [Id is a diagonal submatrix, 
and [ml] and [m2] a r e  diagonal mass  matrices. The coefficients of these matrices 

a r e  given i n  appendix A. 

Equations (5) are free of the derivatives of elastic and geometric characteristics 
of the shell. Therefore, in cases  where these quantities vary, no numerical approxima- 
tion is needed, and, consequently, the overall accuracy of the solution should increase. 
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METHOD OF SOLUTION 

Finite-Difference Discretization 

For  the application of the finite-difference method, it is convenient to divide equa- 
tions (5) into two groups and rewrite them in the following form: 

I 

I The basic idea of the modified finite-difference scheme used in the present study is 
to define the first derivatives of each of the fundamental unknowns at points lying midway 
between the points of definition of the same unknowns. 

two se ts  of interlacing gr ids  for  the two groups of fundamental unknowns {Hm} and 

{Hm) 

This can be accomplished by using 

I I {*m). 

The modified schemes to  be used in conjunction with equations (6) are obtained by 
defining {qm} and {dHm} at points lying between the points of definition of 

and (d*m} as shown in figure 2. Consequently, the two groups of equations (eqs. (sa) 
and (6b)) are satisfied at different sets of points. The use of the above-mentioned inter-  
lacing grids makes it possible to avoid averaging in  the difference-quotient expressions 
of the first derivative (ref. 17). Such averaging can lead to a significant reduction in 
accuracy as well as to  nonmonotonic convergence. This will  be discussed in the numer- 
ical examples. 

i-2 i i t 2  i -4 i +4 

-1 i -3 im 
Y 

0 Cont ro l  po in ts  f o r  l H m }  a n d  Id'ml 

l d H m l  x Cont ro l  po in ts  f o r  a n d  

Figure 2.- Control points  f o r  fundamental unknowns 
i n  modified scheme. 
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The finite -difference equations which simulate the governing equations (eqs. (6)) 
are obtained by replacing the first derivatives in these equations by their appropriate 
difference-quotient expressions. For evenly spaced intervals, the difference-quotient 
expressions with orders  of local discretization e r r o r  ranging between O(22) and 0(2 lo), 
where 2 
and the conventional schemes. Herein "by conventional schemes" means the schemes 
with all the fundamental unknowns and their derivatives defined at the same sets of points. 

is the finite-difference interval, are given in appendix B for both the modified 

4 As an illustration, the 2 -modified finite-difference equations at generic interior 
points i and i + 1 are given by 

and 

The resulting finite-difference equations can be represented in the following com- 
pact form: 

where [K] and [m] contain the "generalized" stiffness and mass  distribution and 
{ Z 1 is the vector of unknowns composed of the subvectors { H ~ } ~  and { G ~ } .  (j = i 

3 
and i f 1 in the conventional and the modified schemes, respectively) at the various 
finite-difference stations. 

Equations (8) a r e  banded and for this formulation will be symmetric in both the con- 
ventional and the modified schemes. The total bandwidth depends on the order of the 
approximation used and equals 8(N + 1) + 1 and 8(N - 1) + 1 in the conventional and 
the modified schemes (ref.  14), respectively, where N is the exponent of the local dis- 
cretization error (appendix B). 

Eigenvalue Extraction Technique 

A variant of the inverse-power method with shifts similar to that presented in ref-  
erence 18 has been used for the determination of the natural frequencies and mode shapes. 
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The method is described in detail in reference 18. In the present study, advantage w a s  
taken of the symmetric banded form of the matrix [K], and a direct Gaussian elimination 
procedure w a s  used for each iteration to evaluate the new trial vector { Z \ .  

NUMERICAL STUDIE S 

Accuracy and Convergence Studies 

Since the efficiency, among other factors, of the modified finite-difference scheme 
presented in this paper can best be assessed by its accuracy in the most unfavorable cases  
within the class  of applicable problems and by the simplicity of its application, the scheme 
was applied to a large number of oval and elliptic cylindrical shells with increasing degree 
of noncircularity, having both uniform and variable thicknesses. The effects of reduction 
in local discretization e r r o r  and of mesh refinement on the accuracy and rate of conver- 
gence of the natural frequencies and mode shapes from the modified scheme were studied 
and compared with those from the conventional schemes. 

The class  of shells considered in the present study included the simply supported 
elliptic shells analyzed by Sewall, Thompson, and Pusey (ref. 6) and the oval shells 
studied by Culberson and Boyd (ref. 8). 

h addition, shells with variable thickness were studied, in which case the thickness 
variation was assumed to be of the form 

h = ho(l  + 6 COS 4n 52) 

where 6 represents the amplitude of thickness variation measured from the average 
thickness over the length L2. All the shells analyzed had doubly symmetric profiles, 
and consequently, only one-quarter of the shell circumference w a s  considered with the 
boundary conditions at the ends taken to be the symmetric or skew-symmetric conditions. 
The four different combinations of symmetry and skew symmetry of the mode shapes, 
along the axes of symmetry of the profile, were studied. 

The local discretization e r r o r  was reduced successively from O(Z2) to 0(Z1O), 
and the number of finite-difference intervals inthe shell quarter n was  increased from 
10 to 40. The reduction of local discretization e r r o r  up to 0(Z1O) was feasible because 
of the extreme simplicity of the form of the governing differential equations (eqs. (6)). 
The numerical discretization was further simplified by the absence of boundary discreti-  
zation e r r o r  in the closed shells considered in the present study. The numerical results 
presented herein pertain to the minimum frequencies and some of the associated mode 
shapes. 
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Before conducting the convergence studies, the minimum natural frequencies for 
one and two longitudinal half-waves were obtained by the finite-difference method and 
compared with the analytical results from references 6 and 8 for 6061 aluminum cylinders 
having the following characteristics: L1 = 61.0 cm (24 in.), L2 = 191.52 cm (75.4 in.), 
h = 0.0813 cm (0.032 in.), E = 68.95 GN/m2 (lo7 psi), v = 0.3, ps = 2768 kg/m3 
(2.588 X 10-4 lb-sec2/in4). These characterist ics were used throughout the numerical 
studies presented in this paper. Both the conventional and the modified solutions con- 
verged to the same frequency, and the converged results a r e  summarized in table 1, 
where it is seen that the agreement between the finite-difference results and those of 
previous investigations is excellent. This agreement is particularly significant, since 
the finite-difference scheme presented herein is very simple to  apply. This simplicity 
applies to the formulation of the problem, discretization, and computer implementation. 
Moreover, the difficulties with convergence as the degree of noncircularity increases 
(ref. 6, p. 14) o r  for higher Fourier harmonics (ref. 8, p. 1479) were, as is shown sub- 
sequently, totally nonexistent in the modified scheme presented herein. 

To elaborate on this last point, the convergence studies of the minimum natural 
frequencies obtained for two shells with high degree of noncircularity a r e  summarized 
in table 2. In addition, figures 3 to  5 provide some indication of the accuracy and rate  
of convergence of both the modified and the conventional schemes as applied to a repre-  
sentative problem of an oval shell with y = 0.70 for three different modes. In fig- 
ures  3 and 4, the rate of convergence with both reduction in local discretization e r r o r  
and mesh refinement is shown for the three modes. Figure 5 shows the mode shapes 
associated with the minimum frequency in the three cases.  

The results of these numerical studies can be summarized as follows: 

The natural frequencies and mode shapes obtained by the modified scheme were, 
in general, more accurate than those obtained by the corresponding conventional schemes 
having the same order of local discretization e r r o r  and the same number of finite- 
difference intervals. In addition, the bandwidth of the resulting finite-difference equa- 
tions is less in the modified scheme than in the corresponding conventional scheme. The 
increase in accuracy of the predictions of the modified scheme is mainly attributed to the 
use of "unaveraged" difference-quotient expressions. An indication of this accuracy is 
provided by the smaller e r ro r  t e rm in the first te rm of the remainder in the modified 
difference-quotient expressions (appendix B). 

In general, the difference between the predictions of the modified and the conven- 
tional schemes decreases with the reduction of the local discretization e r ro r .  

Although the convergence of the natural frequencies obtained by the modified scheme 
with both mesh refinement and reduction in local discretization e r r o r  w a s  monotonic, the 
convergence of the conventional schemes was, in some cases,  nonmonotonic. (See figs. 3 
and 4.) 
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Figure 5.-  Mode shapes associated with minimum frequency f o r  
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For all the homogeneous shells analyzed, the frequencies obtained by use of the 
2 2 -modified scheme were identical with those obtained by use of the Z2-conventional 

scheme with twice as many finite-difference intervals. This is not a coincidence, since 
the finite-difference equations for  the 22-modified scheme are identical with those of the 
corresponding conventional scheme with twice as many finite-difference intervals. 

If the local discretization e r r o r  is successively reduced from 0(Z2) to  0(Z1O), 
the gain in accuracy becomes less appreciable for  each order of reduction, the more so 
the finer the mesh used. This is especially true for  the modified schemes, where the 
gain in accuracy obtained by reducing the local discretization e r r o r  beyond O(Z6) is 
almost insignificant. Since the penalty of increasing the bandwidth for each order  of 
reduction in the discretization e r r o r  remains constant, the use of modified schemes with 
discretization e r r o r  of order higher than 26 is not recommended unless the algorithm 
used for handling the algebraic equations does not depend on the bandwidth. 

Parametr ic  Studies 

After the reliability of the resul ts  obtained by the modified schemes had been 
established, a limited number of parametric studies were made to provide some insight 
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into the effects of variations in the degree of noncircularity and local thickness on the 
minimum frequencies of the same group of oval and elliptic cylinders considered in the 
section entitled "Accuracy and Convergence Studies ." 

The ratios a/b (major to minor axis) and hmax/hmin (maximum to minimum 
shell thickness) were taken as the measures of noncircularity and thickness variation, 
respectively. The thickness variation was  assumed to be given by equation (9). Such a 
thickness variation for a positive 6 amounts to increasing the thickness in the shallow 
regions (ends of the minor axis) and decreasing it in the deep regions of the surface 

(ends of the major axis). The ratio hmax/hmin is given by - '+ 
and hmax/hmin were varied between 1.0 and 2.0. 

The ratios a/b 
1 - 6' 

The effect of variation of a /b  on the minimum frequencies of vibration is given 
in figure 6. It is shown that the minimum frequency of vibration decreases with the 
increase in a/b, that is, with the increase in the degree of noncircularity. This effect 
is more pronounced in oval shells than in elliptic shells having the same a/b ratio; 
this is especially true at higher values of a/b (a/b 2 1.5). 

1. 

f = Minimum frequency of the noncircular cylinder nc 
f =Corresponding frequency of circular cylinder 
C 

Figure 6.- Effect of degree of noncircularity on minimum frequencies of 
simply supported cylinders for one and two longitudinal half-waves. 
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A s  an indication of the effect of variation in thickness on the minimum frequencies 
of vibration, table 3 gives the frequencies for both oval and elliptic cylinders having 
a/b = 2 for different values of hmax/hmin. The results presented in this table show 
that the chosen thickness variation resulted in an increase in the minimum frequency 
with increase of the ratio of hma /hmin .  The increase in frequency was somewhat 
larger  for oval shells than for elliptical shells. Neither, however, changes the minimum 
frequency by more than about 12 percent. 

CONCLUDING REMARKS 

In this paper a modified mixed finite-difference scheme has been presented for the 
free-vibration analysis of simply supported closed arbitrary cylindrical shells with uni- 
form and variable wall thickness. The scheme is based on the linear Sanders-Budiansky 
theory, and the governing equations consist of eight first -order ordinary differential 
equations in the circumferential coordinate. In the finite-difference discretization, two 
interlacing grids are used for  the different fundamental unknowns in such a way as to 
reduce both the local discretization e r ro r  and the bandwidth of the resulting finite- 
difference field equations. The inverse-power method is used to determine the eigen- 
values and eigenvectors. 

Numerical studies were made of the effects of reducing the local discretization 
e r r o r  (from order 0(l2) to order  O(Z1O) where ,? is the finite-difference interval) 
and of mesh refinement on the accuracy and convergence of solutions obtained by the 
modified scheme presented herein, as well as by the conventional scheme (with all the 
fundamental unknowns defined at the same set  of points). In addition, parametric studies 
were made of the effects of variation of the degree of noncircularity and local thickness 
on the minimum frequencies of oval and elliptic cylinders. These parametric studies 
show that the reduction in the minimum frequency of vibration with the increase in the 
degree of noncircularity is more pronounced in oval shells than in elliptic shells having 
the same major to minor axis ratio. Also, a slight increase in the minimum frequency 
can be obtained by means of a redistribution of the shell thickness. 

The finite-difference scheme presented herein is shown to combine a number of 
advantages over other finite-difference schemes previously reported in the literature. 
These advantages include the simplicity of the form of the governing differential equa- 
tions, the absence of the derivatives of elastic and geometric characteristics in these 
equations, and the symmetry of their coefficient matrix. Although the first two advan- 
tages result from the use of f i rs t -order  equation formulation and are independent of the 
method of discretization, the symmetry of the coefficient matrix can only be efficiently 
utilized in a finite -difference discretization. The cited advantages result in simplifica- 
tions of the finite-difference discretization and provide flexibility for improving the 
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accuracy of the scheme without undue complications. Moreover, the effort required in 
the computer implementation of the scheme (coding, dobugging, and verification) can be 
expected to  be significantly l e s s  than that required for other finite-difference schemes. 

The numerical studies demonstrate the high accuracy of the predictions of the mod- 
ified scheme, even when a small number of finite-difference intervals a r e  used, and the 
monotonic character of the convergence of the natural frequencies with both reduction in 
local discretization e r r o r  and mesh refinement. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., December 14, 1972. 
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APPENDM A 

FORMULAS FOR COEFFICIENTS IN THE GOVERNING EQUATIONS 

The independent nonzero terms of the submatrices [A] and [B] in equations (5) 
are given as 

A13= -vmm 

A14 = 

- 12c 
A 2 2 =  ,35282 

2 2  A24 = vm 71 c 

and 

B 1 3 =  - m m  

mnzpA2 p2c 
B23 = 

12 (1 + W )  
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APPENDIX A - Concluded 

B24 = -C 

2c 
B33 = 

h(1 - 4(1+ qg) 
[rl] is a diagonal submatrix given by 

[I13 = 

1 
1 

-1 
-1 

[O] is a 4 by 4 null submatrix, and [m,] and [m,] are 4 by 4 diagonal mass  sub- 
matrices given by 

2 
PsAh0CL 1 

c o  
where K =  - and ps is the mass density. 
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APPENDIX B 

DIFFERENCE -QUOTIENT EXPRESSIONS USED IN PRESENT STUDY 

For  evenly spaced intervals, the difference-quotient expressions at interior points 
for the conventional and the modified schemes can be written in the following compact 
form (fig.  7): 

where q = 0,1,2,3,. . . for the conventional scheme, and 

where q = 1,3,5,7,. . . for the modified scheme. In equations (Bl)  and (B2), F denotes 
any of the fundamental unknowns { Hm} o r  {IC;.}; ar denotes weighting factors with 

= -ar and a. = 0; 1 is the finite-difference interval; ER is the first te rm in the '-r 
e r r o r  se r ies  and is given by (ref. 19) 

N dN+'F 
dxN+ 1 

E R = K R 1  - 
i 

where IN is the order of approximation and KR is a multiplier. The -+ sign before 

i+l 

0 Control points for F and dF 
(a) Conventional schemes. 

o Control points for F 
x Control points for dF 
(b) Modified schemes. 

Figure 7.- Control points for F and dF in conventional and modified schemes. 
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APPENDIX B - Concluded 
l 

a te rm denotes that the summation extends over the positive as well as the negative 
values of the index. In each te rm the sign of the two indices of a and F should be 
identical. 

1 The different values of a, and KR for both the conventional and the modified 
schemes with local discretization e r r o r s  up to O(210) are given in table 4. 
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TABLE 1. - COMPARISON OF MINIMUM FREQUENCIES OBTAINED 

BY FINITE-DIFFERENCE METHOD WITH THOSE 

OBTAINED BY PREVIOUS INVESTIGATORS 

- 
n 

7 
7 
7 
6 

10 
10 

f ,  Hz, for elliptic profile f ,  Hz, for oval profile 

a/b Finite Finite 

1.0 162.2 162.2 163.5 162.2 
1.176 a157.0 157.0 157.8 156.7 
1.538 138.5 138.6 129.6 129.9 
2.5 106.8 106.8 

1.0 325.1 325.7 327.1 325.7 
1.176 310.6 310.7 310.4 309.3 

Reference differences Reference differences 

- - - -  - - -_  

aSkew-symmetric mode, all others are doubly symmetric mode. 
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TABLE 2.- CONVERGENCE O F  MINIMUM FREQUENCIES OBTAINED 

BY DIFFERENT FINITE-DIFFERENCE SCHEMES 

n 
l2 

(a) Oval shell with 5 = 1.538 ( y  = -0.62706), m = 2 
b 

l4 l6 l8 110 

Frequency, Hz, for - I 

- 

236.1 
241.7 
243.4 
244.1 
244.5 

242.8 244.5 245.0 245.2 
244.9 245.3 a245.4 a245.4 
245.2 a245.4 
245.3 

a245.4 

10 
15 
20 
25 
30 

256.5 214.8 
220.7 241.5 
236.1 256.1 
239.9 244.9 
241.7 245.2 

~- 

229.6 
244.5 
245.2 

a245.4 

25 

240.1 243.1 
245.2 245.3 

a245 .4 a245.4 



TABLE 2. - CONVERGENCE OF MINIMUM FREQUENCIES OBTAINED 

BY DIFFERENT FINITE -DIFFERENCE SCHEMES - Concluded 

10 380.9 
15 389.4 
20 391.8 
25 392.8 
30 393.3 

(b) Elliptic cylinder with & =  1.538, m = 3 b 

389.5 392.2 393.4 393.9 
393.5 394.3 394.5 394.5 
394.2 394.5 "394. 6 "394.6 
394.4 394.5 
394.5 394.5 , 

1 I Frequency, Hz, for  - 

10 
15 
20 
25 
30 

563.8 406.5 375.9 374.5 380.6 
374.9 386.6 392.1 393.7 394.3 
380.9 392.2 394.1 394.5 394.5 
386.8 393.6 394.4 394.5 "394.6 
389.4 394.1 394.5 394.5 
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i 

I 

TABLE 3.- EFFECT OF THICKNESS VARIATION ON MINIMUM 

FREQUENCIES IN OVAL AND ELLIPTIC CYLINDERS 
WITH - =  a 2, m = 2 

b 

Minimum frequency, Hz 

Elliptic profile hmax/hmin 

1.0 
1.25 
1.50 
1.75 
2.0 

230.1 
237.6 
242.9 
246.9 
250.0 

Oval profile 

107.3 
112 .o 
115.5 
118.4 
120.7 
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